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1. Introduction 

Dissipative Particle Dynamics (DPD) is an attractive method for simulating soft condensed 
matter, including polymers, surfactants, and colloids at the mesoscale. DPD is a particle-based 
mesoscopic method that can be understood as a coarse-graining technique that correctly predicts 
the hydrodynamic nature of a fluid. The general idea behind DPD is that particles interact with 
each other through a set of stochastic differential equations with conservative, dissipative, and 
random forces. 

While the original DPD formalism is isothermal (1, 2), it has been extended to the isoenergetic 
(DPD-E) (3, 4) case, which is of practical interest for simulating materials at nonisothermal 
conditions. One challenge requiring special consideration is the numerical integration of the 
stochastic equations-of-motion (EOMs). The most commonly applied numerical integration 
scheme for DPD applications originates from the velocity-Verlet (VV) integrator used for 
molecular dynamics applications and is extended to DPD by including the dissipative and 
random forces in the overall force expression (5). This approach is currently used in the Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) software package (6) but is 
limited only to the constant-temperature DPD method. An alternative integration scheme using 
the Shardlow-splitting algorithm (7) separates the EOMs into stochastic and deterministic 
integration steps. It is readily extendable to all DPD variants and has been found to be the most 
effective integration scheme available to date, especially when considering DPD simulations 
under isoenergetic conditions to attain the length and time scales necessary to model complex 
systems. 

In this work, we present a general framework for implementing the DPD-E method into the 
highly scalable LAMMPS simulation software to efficiently model systems under isoenergetic 
conditions. We extend the current LAMMPS VV integration scheme for isothermal DPD 
simulations to the isoenergetic case. In addition, we describe the implementation of the 
Shardlow-splitting algorithm (SSA) to enable longer time steps with comparable accuracy. 
Finally, a description of example benchmark problems is provided, along with a discussion about 
the tradeoffs between the DPD version of the VV and the SSA integration schemes in terms of 
performance and stability.  
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2. Methods 

2.1 Constant Energy Dissipative Particle Dynamics (DPD-E)  

In the DPD-E method (3, 4) particles are defined by a mass im , position ir , momentum ip , and 
particle internal energy ui. The variation of iud  is taken as the sum of the two contributions that 
correspond to the mechanical work done on the system mech

iud  and the heat conduction between 
particles cond

iud . For constant-energy and constant-volume conditions, the evolution of DPD 
particles in time t  is governed by the following EOM: 
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where jiij rrr −=  is the separation vector between particle i  and particle j , and ijijr r= . 

j

j

i

i
ij mm

ppv −=  is the relative velocity between the particle pair. ijγ  and ijσ  are the friction 

coefficient and noise amplitude between particle i  and particle j , respectively. jiij WW dd =  are 

the increments of the Wiener processes associated with momentum variations. The weight 
functions ( )rDω  and ( )rRω  vanish for crr ≥ , where cr  is the cutoff radius, and are typically 
chosen as  

𝜔𝐷(𝑟) =  [𝜔𝑅(𝑟)]2 = ��1 − 𝑟
𝑟𝑐
�
2

, 𝑟 < 𝑟𝑐
0         , 𝑟 ≥ 𝑟𝑐

�  (2) 

 
Similarly, the weight functions ( )rDqω  and ( )rRqω  are defined in an equivalent manner as 
equation 2. iθ  is the particle internal temperature and is related to iu  through a mesoparticle 
equation of state. ijκ  and ijα  are the mesoscopic thermal conductivity and the noise amplitude 
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between particle i  and particle j , respectively, and q
ji

q
ij WW dd −=  are the increments of the 

Wiener processes associated with thermal conduction. The conservative force C
ijF  is given as the 

negative derivative of a coarse-grain potential, CG
iju , and is expressed in LAMMPS as 

𝐹𝑖𝑗𝐶 = −
𝑑𝑢𝑖𝑗𝐶𝐺

𝑑𝑟𝑖𝑗
= 𝐴𝑖𝑗𝜔𝑅 (3) 

 
where Aij is the force constant. Bonet Avalos and Mackie (3) demonstrated that thermodynamic 
consistency requires the following fluctuation-dissipation relations to be satisfied 
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2. Force Calculation: { }N
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Here, the EOMs are formulated for the VV integration scheme using the Shardlow-splitting 
algorithm (VV-SSA) (8). 
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2.2 Parallel Implementation of DPD-E Into the LAMMPS Framework 

A detailed description of the theoretical foundations and parallelization of the DPD-E method 
using the VV and VV-SSA integration schemes can be found elsewhere (8, 9). In this report, the 
relevant source code modifications that were required to implement the VV and VV-SSA 
integration schemes for DPD-E are presented. A summary of the code modifications is provided 
in appendices A–G. The source code is current with the 27 January 2014 version of LAMMPS 
and is available upon written request to the authors. 

To implement DPD-E into LAMMPS, a new atom style was created to handle the DPD particle 
attributes required for DPD-E simulations. In addition, new pair styles were created to compute 
the DPD forces, and new fixes were created to integrate the DPD-E equations of motion through 
a VV and VV-SSA integration scheme. Compute functions were created to monitor the DPD 
particle attributes as a simulation progresses. Each new feature to LAMMPS is described in 
detail in the following sections. 

2.2.1 Implementation of the DPD Atom Style 

For all isoenergetic DPD calculations, a new atom style dpd is required to compute and 
communicate between processors the DPD particle attributes and per-atom arrays. DPD particles 
are specified in the LAMMPS input file via the atom_style command: 

atom_style dpd 

Selection of the dpd atom style requires the DPD internal temperature to be specified in the 
corresponding LAMMPS data file according to the following format: 

• Column 1: particle id 
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• Column 2: particle type 

• Column 3: Internal temperature (θi) of particle i 

• Columns 4–6: Cartesian coordinates (x, y, z) of particle i 

The implementation of the dpd atom style to LAMMPS requires a new AtomVecDPD class to be 
created in order to compute and communicate the DPD particle internal temperature (dpdTheta), 
equation of state flag (eos), conductive energy (uCond), mechanical energy (uMech), as well as 
the differences in the DPD particle’s conductive energy (duCond) and mechanical energy 
(duMech) between two subsequent integration steps. The AtomVecDPD atom style class derives 
from the AtomVec parent class and is similar to and modeled after the existing AtomVecAtomic 
(atom style atomic) class.  

Implementation into LAMMPS requires modification of the existing atom class (LAMMPS 
source files: atom.h and atom.cpp) and creation of the AtomVecDPD class (LAMMPS source 
files: atom_vec_dpd.h and atom_vec_dpd.cpp). The atom class code is modified to define the 
necessary pointers to the DPD attributes. The differences between the modified and the native 
LAMMPS codes are shown in appendix A. Next, the new AtomVecDPD child class was created 
by copying the existing AtomVecAtomic class (LAMMPS source files: atom_vec_atomic.h  and 
atom_vec_atomic.cpp), then adjusting the data file format, the data structure sizes, and the 
communication buffers to handle the additional per-particle arrays. A summary of the differences 
between the AtomVecDPD and AtomVecAtomic classes is given in appendix B.  

2.2.2 Implementation of the DPD and DPD/Atom Compute Commands 

For all isoenergetic DPD calculations, it is useful to monitor all internal properties of the 
particles on both a system and per-particle basis. The ComputeDPD and ComputeDPDatom 
classes were created to monitor these properties over the course of the DPD-E simulations.   

The ComputeDPD class (LAMMPS source files: compute_dpd.h and compute_dpd.cpp) 
computes the total particle internal conductive and mechanical energies by summing the per-
particle energies. In addition, the particle internal temperature of the system is computed through 
a harmonic average of the per-particle internal temperatures, defined as: 

 

𝜃𝑎𝑣𝑔−1 =
1
𝑁
�

1
𝜃𝑖

𝑁

𝑖=1

 (5) 

 
where N is the number of particles in the system. The ComputeDPD class is accessed through the 
LAMMPS input file via the compute command: 

compute    1 all dpd 

and returns a vector of size 5 that contains the following particle internal properties: 
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• The total conductive energy of the system 

• The total mechanical energy of the system 

• The sum of the conductive and mechanical energy of the system 

• The harmonic averaged internal temperature of the system 

• The number of particles in the group 

The ComputeDpdAtom class (LAMMPS source files: compute_dpd_atom.h and 
compute_dpd_atom.cpp) accesses the per-particle internal energies and internal temperature. The 
compute is specified through the LAMMPS input file via the compute command 

compute    1 all dpd/atom 

and enables access to the following particle properties: 

• The per-particle conductive energy 

• The per-particle mechanical energy 

• The per-particle internal temperature  

2.2.3 Implementation of DPD-E With the VV Integration Scheme 

Implementation of the isoenergetic DPD using the VV numerical integration scheme is similar to 
the existing isothermal DPD LAMMPS implementation. The major difference is the calculation 
of the particle internal energies within the dpde pair style compute command and the integration 
of the internal energies within the fix dpde command. The new pair style and fix commands are 
presented together since the classes interact with one another to perform all stages of the VV 
integration.  

2.2.3.1 Implementation of the DPDE Pair Style  

Implementation of constant energy DPD with the VV integration scheme requires a new pair 
style to be defined, which computes the conservative, dissipative, and random forces as well as 
the change in particle internal conductive energy and mechanical energy from one integration 
step to the next. The new PairDPDE class (LAMMPS source files: pair_dpde.h and 
pair_dpde.cpp) is specified through the LAMMPS input file via the pair_style command 

pair_style dpde <kappa flag> <cutoff> <random number seed> 

pair_coeff   i j ADPD  sigmaij  kappa <cutoff> 

An energy-independent or energy-dependent (10) kappa model is specified in the pair_style 
command by setting the kappa_flag to 0 or 1, respectively. In the energy-independent model 
(kappa_flag = 0), κij is explicitly given as a pair coefficient in the LAMMPS input file. In the 
energy-dependent model (kappa_flag = 1), κij is given by the equation  
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𝜅𝑖𝑗 = 𝜅0
𝑘B
�𝑢𝑖+𝑢𝑗

2
�
2
  (6) 

 

where the κ0 pair coefficient is specified in the LAMMPS input file, ui is the total internal energy 
of particle i, and kB is Boltzmann’s constant. 

The PairDPDE pair style class derives from the Pair parent class and is very similar to and 
modeled after the existing PairDPD pair style class, except that it contains additional per-atom 
arrays that update the DPD particle internal temperature (dpdTheta), conductive energy (uCond), 
mechanical energy (uMech), heat capacity (cv), and density (rho), as well as the differences in 
the DPD particle’s conductive energy (duCond) and mechanical energy (duMech) between two 
subsequent integration steps. The main differences between the native PairDPD and modified 
PairDPDE classes are summarized in appendix C. 

2.2.3.2 Implementation of DPDE Fix Commands 

Implementation of constant energy DPD with the VV integration scheme also requires a new fix 
class to be defined, which accounts for the integration of the conductive and mechanical energy 
and applying a mesoparticle equation of state. The new fix is defined as the FixDPDE class 
(LAMMPS source files: fix_dpde.h and fix_dpde.cpp) and is specified in the LAMMPS input file 
via the fix command 

fix     1 all dpde 

The FixDPDE is very similar to and modeled after the existing FixNVE class, except that it 
contains the integration of the conductive and mechanical energy. The main differences between 
the native FixNVE and modified FixDPDE classes are summarized in appendix D. 

Once the updated conductive and mechanical energy is computed, the DPD particle internal 
temperatures are updated through the mesoparticle equation of state that relates the total particle 
internal particle energy to the internal temperature. The mesoparticle equation of state must be 
specified with a separate fix command. Currently, only one choice of the mesoparticle equation 
of state has been implemented. It relates the total internal energy to the internal temperature 
through the heat capacity according to the relation 

 
𝑢𝑖 = 𝐶𝑉,𝑖𝜃𝑖 (7) 

 
The new fix is defined as the FixEOScv class (LAMMPS source files: fix_eos_cv.h and 
fix_eos_cv.cpp) and is specified in the LAMMPS input file via the fix command: 

fix     1 all eos/cv <cv> 

where cv is the value of the heat capacity. The FixEOScv class is summarized in appendix E. 
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2.2.4 Implementation of DPD-E With the VV-SSA Integration Scheme 

Implementation of the isoenergetic DPD using the VV-SSA integration scheme requires a 
splitting of the stochastic and deterministic EOMs. The conservative force is computed within 
the dpde/conservative pair style and is integrated deterministically through the VV integration 
scheme with the fix dpde/shardlow command. The random and dissipative forces are computed 
and integrated through the SSA within the fix dpde/shardlow prior to the deterministic 
integration of the conservative force. The new pair style and fix commands are presented 
together since the classes interact with one another to perform all stages of the VV-SSA 
integration. Additional implementation details of the SSA can be found elsewhere (9). 

2.2.4.1 Implementation of the DPDE/Conservative Pair Style 

Implementation of constant energy DPD using the VV-SSA integration scheme requires a new 
pair style that computes the conservative force to be defined. The new PairDPDEConservative 
class (LAMMPS source files: pair_dpde_conservative.h and pair_dpde_conservative.cpp) is 
specified in the LAMMPS input file via the pair_style command 

pair_style dpde/conservative <kappa flag> <cutoff> <random number seed> 

pair_coeff   i j ADPD  sigmaij  kappa <cutoff> 

An energy-independent or energy-dependent (10) kappa model is specified in the pair_style 
command by setting the kappa_flag to 0 or 1, respectively. In the energy-independent model 
(kappa_flag = 0), κij is explicitly given as a pair coefficient in the LAMMPS input file. In the 
energy-dependent model (kappa_flag = 1), κij is related to the κ0 pair coefficient as given in 
equation 6. 

The PairDPDEConservative pair style class derives from the Pair parent class and is very similar 
to and modeled after the existing PairDPD pair style class. The main difference is that random 
and dissipative computations are removed, while the required data structures to compute the 
DPD particle attributes are included. The main differences between the PairDPD and 
PairDPDEConservative classes are summarized in section 2.2.4.2 and are explicitly shown in 
appendix F. 

2.2.4.2 Implementation of DPDE/Shardlow Fix Command 

Implementation of constant energy DPD using the VV-SSA integration also requires a new fix 
class to be defined, which accounts for the stochastic integration of the random and dissipative 
forces, the deterministic integration of the conservative force, and the integration of the 
conductive and mechanical energy for constant energy simulations. The new fix is defined as the 
FixDPDEShardlow class (LAMMPS source files: pair_dpde_shardlow.h and pair_dpde_ 
shardlow.cpp) and is specified in the LAMMPS input file via the fix command: 

fix     1 all dpde/shardlow 
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The FixDPDEShardlow class is very similar to the existing FixNVE class, except that it contains 
an additional function to integrate the stochastic equations of motion, the conductive energy, and 
the mechanical energy. These integrations are handled via a function called stochastic_integrate 
within the FixDPDEShardlow class. The DPD particle internal temperatures are updated through 
the mesoparticle equation of state that relates the total particle internal particle energy to the 
internal temperature. The mesoparticle equation of state must be specified with a separate fix 
command. Currently, only one choice of the mesoparticle equation of state has been 
implemented and can be specified in the LAMMPS input file via the fix command 

fix     1 all eos/cv <cv> 

The main differences between the native FixNVE and modified FixDPDEShardlow classes are 
summarized in appendix G. 

3. Example Input Files for VV and VV-SSA Integration 

Example input files running a DPD-E simulation in LAMMPS with the VV and VV-SSA 
integration schemes are provided in figures 1 and 2, respectively.  
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Figure 1. Example input file for simulating a DPD fluid under isoenergetic conditions with the VV integration 
scheme.  

# Input File for DPD fluid under isoenergetic conditions using the VV integration scheme 
boundary p p p 
 
units           metal  # ev, ps 
atom_style      dpd 
read_data       initial.conf.DPDfluid 
 
communicate single vel yes 
mass            1 125.9 
pair_style      dpde 1 8.60 234324 
pair_coeff      1 1 0.0752 0.0223 4.55E-05 8.60 
 
neighbor        2.0 bin 
neigh_modify    every 1 delay 0 check no once no 
 
# Time in ps for metal units 
timestep        0.001 
 
compute         dpdU all dpd 
 
variable        totEnergy equal pe+ke+c_dpdU[3] 
 
thermo          1 
thermo_style    custom step temp pe ke c_dpdU[1] c_dpdU[2] c_dpdU[3] v_totEnergy c_dpdU[4] 
thermo_modify   format float %15.10E 
 
fix             1 all dpde 
fix             2 all eos/cv  0.00517041 
run             100 
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Figure 2. Example input file for simulating a DPD fluid under isoenergetic conditions with the VV-SSA 
integration scheme. 

# Input File for DPD fluid under isoenergetic conditions using the VV-SSA integration scheme 
boundary p p p 
 
units           metal  # ev, ps 
atom_style      dpd 
read_data       initial.conf.DPDfluid 
 
communicate single vel yes 
mass            1 125.9 
pair_style      dpde/conservative 1 8.60 234324 
pair_coeff      1 1 0.0752 0.0223 4.55E-05 8.60 
 
neighbor        2.0 bin 
neigh_modify    every 1 delay 0 check no once no 
 
# Time in ps for metal units 
timestep        0.001 
 
compute         dpdU all dpd 
 
variable        totEnergy equal pe+ke+c_dpdU[3] 
 
thermo          1 
thermo_style    custom step temp pe ke c_dpdU[1] c_dpdU[2] c_dpdU[3] v_totEnergy c_dpdU[4] 
thermo_modify   format float %15.10E 
 
fix             1 all dpde/shardlow 
fix             2 all eos/cv  0.00517041 
run             100 

 
The example input files contain the commands to simulate a 10,125 particle system in a cubic 
box with volume 129.0 Å3 at a temperature of 300 K under isoenergetic conditions with a time 
step of 0.001 ps. The eos/cv equation of state is specified along with an energy-dependent kappa 
model. The neighbor lists are reconstructed after every time step, and the thermodynamics are 
output every 0.001 ps. The total particle internal energies and internal temperature are included 
in the thermodynamics via the compute dpd command. The DPD-E parameters are summarized 
in table 1.  
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Table 1. Model and system parameters for DPD-E simulations 
of the DPD fluid model. 

System Property Real Units 
𝜌𝐷𝑃𝐷 4.72 × 10-3 Å3 

𝑇𝑆𝑃 = 𝑇𝑖𝑛𝑖𝑡  300 K 
𝑚𝑎𝑠𝑠 125.9 g mol-1 
𝐴𝐷𝑃𝐷 7.52 × 10-2 eV Å-1 
𝑟𝑐𝑢𝑡  8.6 Å 
𝜎 2.23 × 10-2 eV ps1/2 Å-1 
𝜅0 4.55 × 10-5 ps-1 
𝐶𝑉 5.17 × 10-3 eV K-1 

 

4. Results 

The example benchmarks described in section 5 are compared in terms of performance and 
accuracy in Lísal et al. (8), where DPD fluid calculations were performed under isoenergetic 
conditions with 10,125 particles at time steps ranging from 0.001 to 0.4 ps for a total of 1 ns of 
simulation time. Lísal et al. (8) shows that the VV-SSA integrator is considerably more stable 
than the VV integrator, where comparable accuracy is achieved with time steps that are 10–100 
times longer than the traditional VV integrator. However, the VV-SSA implementation is shown 
to be more computationally expensive than the serial VV implementation on a per time step basis 
and carries additional parallelization overhead. Analysis of the trade-off between computation 
performance and time-step size stability showed that the VV-SSA integration scheme can 
decrease the overall time-to-solution by a factor of 10–100 for a DPD-E simulation, thereby 
justifying practical and regular implementation of the approach.  

5. Conclusions 

In this report we have provided the user with the following information and resources: 

• A detailed description of the implementation of the DPD-E method using the VV and  
VV-SSA integration schemes into LAMMPS.  

• Documentation that highlights the major modifications to the source code.  

• Example input scripts to run the software.  

• A benchmark study to give an indication of the performance and accuracy of DPD-E with 
the VV and VV-SSA integration schemes.  
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Appendix A. Code Differences Between the Atom Class Files as Compared to 
the Native LAMMPS Code 

                                                 
  This appendix appears in its original form, without editorial change. 
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diff --git a/src/atom.h b/src/atom.h 

index cc044f1..1d122ec 100644 

--- a/src/atom.h 

+++ b/src/atom.h 

@@ -50,6 +50,10 @@ class Atom : protected Pointers { 

   int *type,*mask; 

   imageint *image; 

   double **x,**v,**f; 

+  double *uCond, *uMech; 

+  double *duCond, *duMech; 

+  double *dpdTheta; 

+  int *eos; 

 

   tagint *molecule; 

   int *molindex,*molatom; 

 

 

diff --git a/src/atom.cpp b/src/atom.cpp 

index 86ae09b..888aebe 100644 

--- a/src/atom.cpp 

+++ b/src/atom.cpp 

@@ -72,6 +72,10 @@ Atom::Atom(LAMMPS *lmp) : Pointers(lmp) 

   type = mask = NULL; 

   image = NULL; 

   x = v = f = NULL; 

+  uCond = uMech = NULL; 

+  duCond = duMech = NULL; 

+  dpdTheta = NULL; 

+  eos = NULL; 

 

   molecule = NULL; 

   molindex = molatom = NULL; 
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Appendix B. Summary of LAMMPS Code Differences Between the 
AtomVecDPD Class as Compared to the Native AtomVecAtomic Class 

                                                 
  This appendix appears in its original form, without editorial change. 
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• AtomVecDPD Constructor:  

o Initialized uCond, uMech, duCond, duMech and eos pointers to NULL 

o Updated comm_x_only and comm._f_only to 1 to allow for forward communication of rho, cv and dpdTheta 

o Updated data buffer size definitions for the forward and border communications (size_forward=9, size_border=12) to 

account for cv, dpdTheta, eos, uCond and uMech 

o Updated the number of columns in the data file (size_data_atom = 6). The data file contains the following six columns: 

 Column 1: particle id 

 Column 2: particle type 

 Column 3: Internal temperature (θi) of particle i 

 Columns 4-6: Cartesian coordinates (x, y, z) of particle i 

o Updated the column the x data is located (xcol_data = 4) 

o Set the rho_flag to be on (atom->rho_flag = 1) 

• void AtomVecDPD::grow(int n) 

o Added memory allocation for rho, drho, cv, dpdTheta, eos, uCond, uMech, duCond and duMech 

• void AtomVecDPD::grow_reset() 

o Added pointers for rho, drho, cv, dpdTheta, eos, uCond, uMech, duCond and duMech 

• void AtomVecDPD::copy(int i, int j, int delflag)  

o Copies particle i rho, drho, cv, dpdTheta, eos, uCond, uMech to particle j  

• int AtomVecDPD::pack_comm(int n, int *list, double *buf, int pbc_flag, int *pbc) 

o Packs rho, cv, dpdTheta, eos, uCond and uMech in the forward communication buffer 

• int AtomVecDPD::pack_comm_vel(int n, int *list, double *buf, int pbc_flag, int *pbc) 

o Packs rho, cv, dpdTheta, eos, uCond and uMech in the forward communication buffer, along with velocities 

• void AtomVecDPD::unpack_comm(int n, int first, double *buf) 

o Unpacks rho, cv, dpdTheta, eos, uCond and uMech from forward communication buffer 

• void AtomVecDPD::unpack_comm_vel(int n, int first, double *buf) 

o Unpacks rho, cv, dpdTheta, eos, uCond and uMech from forward communication buffer, along with velocities 

• int AtomVecDPD::pack_border(int n, int *list, double *buf, int pbc_flag, int *pbc) 

o Packs rho, cv, dpdTheta, eos, uCond and uMech in the border communication buffer.  

• int AtomVecDPD::pack_border_vel(int n, int *list, double *buf, int pbc_flag, int *pbc) 

o Packs rho, cv, dpdTheta, eos, uCond and uMech in the border communication buffer, along with velocities 

• void AtomVecDPD::pack_comm_hybrid(int n, int *list, double *buf) 

o Packs rho, cv, dpdTheta, eos, uCond and uMech for the hybrid atom style communication buffer 

• void AtomVecDPD::pack_border_hybrid(int n, int *list, double *buf) 

o Packs rho, cv, dpdTheta, eos, uCond and uMech in the hybrid atom style border communication buffer 

• void AtomVecDPD::unpack_border(int n, int first, double *buf) 

o Unpacks rho, cv, dpdTheta, eos, uCond and uMech from the border communication buffer 

• void AtomVecDPD::unpack_border_vel(int n, int first, double *buf) 

o Unpacks rho, cv, dpdTheta, eos, uCond and uMech from the border communication buffer, along with velocities 

• void AtomVecDPD::unpack_comm_hybrid(int n, int first, double *buf) 

o Unpacks rho, cv, dpdTheta, eos, uCond and uMech from the hybrid atom style communication buffer 

• void AtomVecDPD::unpack_border_hybrid(int n, int first, double *buf) 

o Unpacks rho, cv, dpdTheta, eos, uCond and uMech from the hybrid atom style border communication buffer 

• int AtomVecDPD::pack_exchange(int i, double *buf) 

o Packs rho, cv, dpdTheta, eos, uCond and uMech in the exchange communication buffer.  

• int AtomVecDPD::unpack_exchange(double *buf) 
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o Unpacks rho, cv, dpdTheta, eos, uCond and uMech from exchange communication buffer.  

• int AtomVecDPD::size_restart() 

o Adjusted the size of the restart data to include rho, cv, dpdTheta, eos, uCond and uMech 

 Changed from 11 to 17 

• int AtomVecDPD::pack_restart(int i, double *buf) 

o Packs rho, cv, dpdTheta, eos, uCond and uMech in the restart buffer 

• int AtomVecDPD::unpack_restart(double *buf) 

o Unpacks rho, cv, dpdTheta, eos, uCond and uMech from the restart buffer 

• void AtomVecDPD::create_atom(int itype, double *coord) 

o Creates a new particle and sets default rho, drho, cv, dpdTheta, eos, uCond, uMech, duCond and duMech values  

• void AtomVecDPD::data_atom(double *coord, tagint imagetmp, char **values) 

o Read internal temperature (dpdTheta) from data file; initialize rho, cv, uCond[i] and uMech[i] to zero and eos to -1 

• int AtomVecDPD::data_atom_hybrid(int nlocal, char **values) 

o Read internal temperature (dpdTheta) from hydrid atom style, data file  

• void AtomVecDPD::pack_data(double **buf) 

o Packs internal temperature (dpdTheta) into the data file buffer 

• int AtomVecDPD::pack_data_hybrid(int i, double *buf) 

o Packs internal temperature (dpdTheta) into the hydrid atom style, data file buffer 

• void AtomVecDPD::write_data(FILE *fp, int n, double **buf) 

o Writes internal temperature (dpdTheta) to the data file 

• int AtomVecDPD::write_data_hybrid(FILE *fp, double *buf) 

o Writes internal temperature (dpdTheta) to the hybrid atom info to data file 

• bigint AtomVecDPD::memory_usage() 

o Added memory checks for rho, drho, cv, dpdTheta, eos, uCond, uMech, duCond and duMech 
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Appendix C. Summary of LAMMPS Code Differences Between the PairDPDE 
Class as Compared to the Native PairDPD Class 

                                                 
  This appendix appears in its original form, without editorial change. 
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• PairDPDE constructor: PairDPDE::PairDPDE(LAMMPS *lmp) : Pair(lmp) 

o Set the size of the pair forward communication to 3 (duCondi, duMechi, dpdThetai) 

o Set the size of the pair reverse communication to 2 (duCondi, duMechi) 

• PairDPDE destructor: PairDPDE::~PairDPDE() 

o Deallocate kappa array;  remove gamma deallocation 

• void PairDPDE::compute(int eflag, int vflag) 

o Initialize duCond and duMech by setting the arrays to 0.0 followed by a forward communication  

o Define wR and wD: 𝜔𝐷(𝑟) =  [𝜔𝑅(𝑟)]2 = ��1 − 𝑟
𝑟𝑐
�
2

, 𝑟 < 𝑟𝑐
0         , 𝑟 ≥ 𝑟𝑐

� 

where rc is the cutoff radius for the pair of interacting particles. 

NOTE: In PairDPD class, wd definition differs 

o Compute theta_ij: 𝛩𝑖𝑗−1 = 1
2
� 1
𝜃𝑖

+ 1
𝜃𝑗
� 

o Compute gamma_ij: 𝛾𝑖𝑗 =
𝜎𝑖𝑗
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o Compute the conservative, dissipative and random forces 
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where ςijj is a random number sampling a Gaussian distribution and Δt is the timestep used in the simulation 

o Compute kappa_ij: 𝜅𝑖𝑗or  𝜅𝑖𝑗 = 𝜅0
𝑘𝐵
�
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o Compute alpha_ij: 𝛼𝑖𝑗 = �2𝑘𝐵𝜅𝑖𝑗  

o Compute mu_ij: 𝜇𝑖𝑗 = � 1
𝑚𝑖
− 1

𝑚𝑗
� 

o Compute duMechi and duMechj 
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   𝑑𝑢𝑗𝑚𝑒𝑐 ℎ =  𝑑𝑢𝑖𝑚𝑒𝑐ℎ  

o Compute duCondi and duCondj 

 𝑑𝑢𝑖𝑐𝑜𝑛𝑑 = 𝜅𝑖𝑗 �
1
𝜃𝑖
− 1

𝜃𝑗
�𝜔𝐷𝑞 + 𝛼𝑖𝑗𝜔𝑅𝑞𝜍𝑖𝑗

𝑞 1
√𝛥𝑡

          

   𝑑𝑢𝑗𝑐𝑜𝑛𝑑 =  −𝑑𝑢𝑖𝑐𝑜𝑛𝑑  

o Compute the interaction energy between the particle pair 

 evdwl = 0.5*a0[itype][jtype]*cut[itype][jtype] * wd; 

o Reverse communication of duCond and duMech 

• void PairDPDE::allocate() 

o Allocate memory for kappa array; Remove gamma allocation 

• void PairDPDE::settings(int narg, char **arg) 
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o Read 3 arguments associated with pair style (kappa_flag, cut_global and seed);  Remove temperature 

o Ensure kappa_flag is set to either 0 or 1  

•  void PairDPDE::coeff(int narg, char **arg) 

o Reads in 3-4 three pair coefficients 

 ADPD  

 Sigma (𝜎𝑖𝑗 );  removed gamma 

 Kappa_ij (𝜅𝑖𝑗 ) or Kappa0 (𝜅0)  

 cutoff (optional) 

• void PairDPDE::init_style() 

o Ensures that the Newton pair is set to “on” for DPD calculations 

• double PairDPDE::init_one(int i, int j) 

o Initializes the pair coefficients for all particle pairs;  Add kappa, sigma and remove gamma 

• void PairDPDE::write_restart(FILE *fp) 

o Updates the pair coefficient information to the restart file;  Add kappa, sigma and remove gamma 

• void PairDPDE::read_restart(FILE *fp) 

o Read pair coefficients from restart file and broadcast across processors; Add kappa, sigma and remove gamma 

• void PairDPDE::write_restart_settings(FILE *fp) 

o Removed the temperature variable  

• void PairDPDE::read_restart_settings(FILE *fp) 

o Removed temperature variable 

• void PairDPD::write_data(FILE *fp) 

o Removed gamma;  Added kappa and sigma to list of variable to write to the data file 

• void PairDPD::write_data_all(FILE *fp) 

o Removed gamma;  Added kappa and sigma to list of variable to write to the data file 

• double PairDPDE::single(int i, int j, int itype, int jtype, double rsq, double factor_coul, double factor_dpd, double &fforce) 

o Updated definition of wr and wd 

• int PairDPDE::pack_comm(int n, int *list, double *buf, int pbc_flag, int *pbc) 

o Packs the buffer for forward communication (duCond, duMech and dpdTheta) 

• void PairDPDE::unpack_comm(int n, int first, double *buf) 

o Unpacks the buffer for forward communication (duCond, duMech and dpdTheta) 

• int PairDPDE::pack_reverse_comm(int n, int first, double *buf) 

o Packs the buffer for reverse communication (duCond and duMech) 

• void PairDPDE::unpack_reverse_comm(int n, int *list, double *buf) 

o Unpacks the buffer for reverse communication (duCond and duMech) 
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Appendix D. Summary of LAMMPS Code Differences Between the FixDPDE 
Class as Compared to the Native FixNVE Class 

                                                 
  This appendix appears in its original form, without editorial change. 
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• FixDPDE constructor 

o Ensure 3 keywords are given in the fix dpde command  

• int FixDPDE::setmask() 

o Removed all reference to RESPA 

• void FixDPDE::init() 

o Ensure that an equation of state is specified in another fix;  otherwise, print error message and stop 

o Remove all references to RESPA 

• void FixDPDE::initial_integrate(int vflag) 

o Integrate uCond and uMech by the relations: 

uCondi = uCondi + ½ * dt * duCondi 

uMechi = uMechi + ½ * dt * duMechi 

• void FixDPDE::final_integrate() 

o Integrated uCond and uMech by the relations: 

uCondi = uCondi + ½ * dt * duCondi 

uMechi = uMechi + ½ * dt * duMechi  
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Appendix E. Summary of the FixEOScv Class 

                                                 
  This appendix appears in its original form, without editorial change. 
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• FixEOScv constructor  

o Ensure 4 keywords are specified in the fix eos/cv command 

o Read the heat capacity, cv 

• int FixEOScv::setmask() 

o Set the mask to POST_INTEGRATE and END_OF_STEP 

• void FixEOScv::init() 

o Initialize the cv array 

o Initialize the eos array 

o Initialize uCond and uMech to be ½ * cv[i] * dpdTheta[i] 

• void FixEOScv::post_integrate() 

o Apply the EOS to compute the DPD particle internal temperature. The eos/cv defines the following relation: 

θi = (uCondi + uMechi) / Cv,i 

where θi is the internal particle temperature (dpdTheta).  

• void FixEOScv::end_of_step() 

o Apply the EOS to compute the DPD particle internal temperature. The eos/cv defines the following relation: 

θi = (uCondi + uMechi) / Cv,i 

                                        where θi is the internal particle temperature (dpdTheta).  
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Appendix F. Summary of LAMMPS Code Differences Between the PairDPDE 
Conservative Class as Compared to the Native PairDPD Class 

                                                 
  This appendix appears in its original form, without editorial change. 
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• PairDPDEConservative destructor: PairDPDE::~PairDPDE() 

o Deallocate kappa array; remove gamma deallocation 

• void PairDPDEConservative::compute(int eflag, int vflag) 

o Removed dissipative and random force calculations 

o Define wR and wD: 𝜔𝐷(𝑟) =  [𝜔𝑅(𝑟)]2 = ��1 − 𝑟
𝑟𝑐
�
2

, 𝑟 < 𝑟𝑐
0         , 𝑟 ≥ 𝑟𝑐

� 

where rc is the cutoff radius for the pair of interacting particles. 

NOTE: In PairDPD class, wd definition differs 

o Compute the conservative force: 𝐹𝑖𝑗𝐶 = 𝐴𝐷𝑃𝐷𝜔𝑅(𝑟) 

o Compute the interaction energy between the particle pair 

 evdwl = 0.5*a0[itype][jtype]*cut[itype][jtype] * wd; 

• void PairDPDEConservative::allocate() 

o Allocate memory for kappa array; Remove gamma allocation 

• void PairDPDEConservative::settings(int narg, char **arg) 

o Read 3 pair style arguments (kappa_flag, cut_global and seed); Remove the temperature argument 

o Ensure kappa_flag is set to either 0 or 1 

•  void PairDPDEConservative::coeff(int narg, char **arg) 

o Reads in 3-4 three pair coefficients 

 ADPD  

 Sigma (𝜎𝑖𝑗 );  removed gamma 

 Kappa_ij (𝜅𝑖𝑗 ) or Kappa0 (𝜅0)  

 cutoff (optional) 

• void PairDPDEConservative::init_style() 

o Ensures that ghost velocities are stored and Newton pair is set to “on” for DPD calculations 

• double PairDPDEConservative::init_one(int i, int j) 

o Initializes the pair coefficients for all particle pairs;  Add kappa, sigma and remove gamma 

• void PairDPDEConservative::write_restart(FILE *fp) 

o Updates the pair coefficient information to the restart file;  Add kappa, sigma and remove gamma 

• void PairDPDEConservative::read_restart(FILE *fp) 

o Reads pair coefficients from restart file and broadcast across processors; Add kappa, sigma and remove gamma 

• void PairDPDEConservative::write_restart_settings(FILE *fp) 

o Remove the temperature variable  

• void PairDPDEConservative::read_restart_settings(FILE *fp) 

o Remove temperature variable 

• void PairDPDEConservative::write_data(FILE *fp) 

o Removed gamma;  Added kappa and sigma to list of variable to write to the data file 

• void PairDPDEConservative::write_data_all(FILE *fp) 

o Removed gamma;  Added kappa and sigma to list of variable to write to the data file 

• double PairDPDEConservative::single(int i, int j, int itype, int jtype, double rsq, double factor_coul, double factor_dpd, double &fforce) 

o changed definition of wd and wr to be consistent with manuscript 
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Appendix G. Summary of LAMMPS Code Differences Between the 
FixDPDEShardlow Class as Compared to the Native FixNVE Class 

                                                 
  This appendix appears in its original form, without editorial change. 
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• FixDPDEShardlow Constructor 

o Ensure 3 keywords are given in the fix dpde/shardlow command  

o Set the size of the fix forward communication to 10 (dvSSA[i][0-2], v[i][0-2], duCond[i], duMech[i], uCond[i], uMech[i]) 

o Set the size of the fix reverse communication to 5 (dvSSA[i][0-2],duCond[i], duMech[i]) 

• int FixDPDEShardlow::setmask() 

o Remove all references to RESPA 

• void FixDPDEShardlow::init() 

o Ensure that an equation of state is specified in another fix;  otherwise, print error message and stop 

o Set the pairDPDE pointer to access the pairDPDEConservative class data structures 

• void FixDPDEShardlow::initial_integrate(int vflag) 

o Added a shardlow_integrate() function prior to the velocity integration 

o Integrate the velocity and position at a half time step (Same as FixNVE) 

• void FixDPDEShardlow::final_integrate() 

o Integrate the velocities at a half time step (Same as FixNVE) 

• void FixDPDEShardlow::shardlow_integrate(): Member function to perform the stochastic integration of velocities 

o Compute the length of the bounding box dimensions (bbx, bby, bbz) 

 Ensure all bounding box dimensions are larger than interaction cutoff radius;  Print error if not satisfied 

o Allocate memory for velocity (dvSSA[j][0-2]) 

o Initialize (dvSSA[j][0-2], duCond[j], duMech[j]) arrays and forward communicate to ensure all processors are initialized 

o Allocate memory for the particle pair active interaction regions (jbin) 

 Count the number of pairs (count), then allocate active interaction region bins, jbin[count] 

 Assign each pair to an active interaction region depending on the coordinates of the pair. One atom will be in 

central box; assign the AIR based on the 2nd atom ,which may be in the central box or a neighboring box 

o Loop over the eight active interaction regions (Stages) 

 If the pair lies in the current active interaction region, then … 

• Compute the pair separation distance, rij, and check if it is less than the interaction cutoff 

o Store the current velocities (vx0i, vy0i, vz0i, vx0j, vy0j, vz0j) 

o Compute the velocity difference between i and j: 

j

j

i

i
ij mm

ppv −← = vi - vj 

o Compute the dot product, dot = rij • vij 

o Compute wR and wD: 𝜔𝐷(𝑟) =  [𝜔𝑅(𝑟)]2 = ��1 − 𝑟
𝑟𝑐
�
2

, 𝑟 < 𝑟𝑐
0         , 𝑟 ≥ 𝑟𝑐

� 

                                     where rc is the cutoff radius for the pair of interacting particles 

o Apply EOS to compute the current internal temperature. 

o Compute theta_ij: 𝛩𝑖𝑗−1 = 1
2
� 1
𝜃𝑖

+ 1
𝜃𝑗
� 

o Compute gamma_ij: 𝛾𝑖𝑗 =
𝜎𝑖𝑗
2

2𝑘𝐵𝜃𝑖𝑗
 

o Obtain a random number ςij from a Gaussian distribution  

o Compute the momentum (velocity) update 
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o Re-Compute the velocity difference between i and j: 

j

j

i

i
ij mm

ppv −← = vi - vj 

o Re-compute the dot product: dot = rij • vij 

o Compute mu_ij: 𝜇𝑖𝑗 = � 1
𝑚𝑖
− 1

𝑚𝑗
� 

o Compute the momentum (velocity) update 
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o Compute a new random number, ςij
q 

o Compute kappa_ij: 𝜅𝑖𝑗 = 𝜅0
𝑘𝐵
�
𝑢𝑖+𝑢𝑗
2
�
2

  (for T-dependent model) 

o Compute alpha_ij: 𝛼𝑖𝑗 = �2𝑘𝐵𝜅𝑖𝑗  

o Compute the conductive energy update 
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o Compute the mechanical energy update 
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• Reverse communicate the velocity updates.  

• Update the velocities and energies (v[j][0-2], uCond[j], uMech[j]) 

• Reinitialize the arrays  to zero (dvSSA[j][0-2], duCond[j], duMech[j]) 

• Forward communicate the velocity/energy updates 

 Delete the memory allocations for jbin and dvSSA 

• int FixDPDEShardlow::sort_bin(double rx, double ry, double rz) 

o Compare the particle position to the reference points of the bounding box 

 Determine whether the point lies inside the bounding box, or outside the bounding box  

 Return a number to indicate the active interaction region 

• 0 = Inside bounding box 

• 1 = Top 

• 2 = Right 
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• 3 = Top-right and Bottom-right 

• 4 = Back  

• 5 = Top-back and Bottom-back 

• 6 = Left-back and Right-back  

• 7 = Back Corners 

• int FixDPDEShardlow::pack_comm(int n, int *list, double *buf, int pbc_flag, int *pbc) 

o Packs the buffer for forward communication (dvSSA, v, duCond, duMech, uCond, uMech) 

• void FixDPDEShardlow::unpack_comm(int n, int first, double *buf) 

o Unpacks the buffer for forward communication (dvSSA, v, duCond, duMech, uCond, uMech) 

• int FixDPDEShardlow::pack_reverse_comm(int n, int first, double *buf) 

o Packs the buffer for reverse communication (dvSSA, duCond, duMech) 

• void FixDPDEShardlow::unpack_reverse_comm(int n, int *list, double *buf) 

o Unpacks the buffer for reverse communication (dvSSA, duCond, duMech) 
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